Solving Visual Puzzels using Large Language Models

Markus Goetz
M1361018

ml1361018Q@cgu.edu.tw

Jye Sawtell-Rickson
M1361019

ml1361019C@cgu.edu.tw

Debonnet Orion
M1361022

ml361022Q@cgu.edu.tw

Chang Gung University

Abstract

This study explores the potential of Large Language Mod-
els (LLMs) in tackling the Abstract Reasoning Corpus
(ARC) Challenge, designed to assess Al’s ability to per-
form human-like abstract reasoning. Traditional ARC solu-
tions rely on extensive image manipulations, which, while
effective, lack the cognitive flexibility required for Artifi-
cial General Intelligence (AGI). We propose a hybrid ap-
proach that combines LLMs with autoencoders (AEs) to
bridge this gap. By converting visual inputs into text-
based formats, we enable LLMs to reason abstractly, and
we further enhance performance through encoding strate-
gies, fine-tuning, and test-time training mechanisms.Our
experiments reveal that while LLMs alone struggle with
complex transformations, their integration with AEs consis-
tently improves accuracy and reduces errors. Furthermore,
reasoning-centric models like ol-mini outperform larger
models on tasks requiring logical inference. Recent ad-
vancements, such as OpenAl’s 03 reasoning model, demon-
strate remarkable progress, achieving human-like accuracy
on ARC benchmarks through dynamic test-time adapta-
tions. However, high computational costs remain a limi-
tation. These findings highlight the potential of hybrid ar-
chitectures and reasoning-centric approaches in advancing
machine reasoning capabilities, contributing to the broader
quest for AGL.

1. Introduction

Artificial General Intelligence (AGI) represents a signif-
icant milestone in artificial intelligence, where machines
achieve cognitive flexibility and reasoning abilities simi-
lar to those of humans. Unlike today’s Al, which ex-
cels at narrow, specific tasks, AGI aims to handle a wide
range of cognitive challenges without requiring extensive
retraining. Achieving AGI involves developing systems that
can reason, adapt, and learn in ways that go beyond pre-

programmed knowledge. One approach to advancing these
capabilities is the Abstract Reasoning Corpus (ARC) Chal-
lenge on Kaggle, a competition that challenges Al systems
to solve problems requiring human-like abstract reasoning.
ARC presents tasks that mirror the cognitive flexibility nec-
essary for AGI by requiring models to interpret visual pat-
terns, sequences, and transformations with minimal prior
information—abilities that current AI systems find chal-
lenging. By examining AGI through the lens of ARC, we
can better understand both the progress and the limitations
in machine reasoning, as well as the broader implications
for AGI development.

In recent years of this challenge, some solutions with high
success rates have been developed, but none seem to bring
Al closer to AGI, as they “brute force” the problem by
applying extensive image transformations rather than en-
abling the Al to “think” through the solution. This insight
motivated us to experiment with Large Language Models
(LLMs) to solve ARC puzzles. LLMs, such as GPT-3 and
ChatGPT, have demonstrated impressive capabilities in nat-
ural language processing and understanding, making them
promising candidates for solving abstract reasoning tasks.
By leveraging LLMs, we aim to develop a more human-like
approach to solving ARC puzzles, moving beyond image
manipulation to reasoning and understanding.

2. The ARC Dataset

The ARC challenge contains a variety of tasks. Each task
includes input/output pairs that demonstrate reasoning pat-
tern to be applied to the “test” input for each task. These
are used for training models. For testing the model, the test
output is not given, and it must be inferred based on the ex-
ample tasks. A snippet of the data prvided by the dataset for
one of the tasks is shown in Figure 1.

2.1. Expansion of the Dataset

Expanding the dataset enhances the models ability to learn
generalizable patterns rather than memorizing specific ex-

{"007bbfb7":
{"test": [

0, 7
7, 7
0, 7
0, 7
7, 7
0, 7
0, 7
7, 7
0, 7

"output”: [
[4, 0, 4, 0,
[0, 0, 0, 0,

Figure 1. A snippet of the ARC dataset structure

amples, which reduces the risk of overfitting. Overfitting
occurs when a model performs well on training data but
fails to generalize to unseen data. A larger dataset ex-
poses the model to a broader range of variations and out-
liers, thereby increasing its robustness in handling real-
world data. To expand our data pool, we leverage code from
the reverse-engineered ARC (RE-ARC) project on GitHub
(https://github.com/michaelhodel/re-arc). The project pro-
vides a generator for each of the 400 ARC tasks. By gener-
ating 1,000 verified examples per task, we obtain an addi-
tional 400,000 cases for training and testing. Individual ex-
amples from the generated dataset can be accessed by pars-
ing it with a JSON library. An example of both the original
and generated datasets is shown in Figure 2.

2.2. Difficulty Ranking

To identify tasks that are more accessible for LLMs to un-
derstand and solve efficiently, we categorized the 400 ARC
tasks based on difficulty. Since the original dataset does not
include difficulty levels, we ranked tasks using two criteria:

1. Solver Function Line Count: The ARC-Domain Spe-
cific Language (ARC-DSL) is designed to handle tasks
within the ARC framework, utilizing principles such as
functional design, abstracted functions, and generic op-
erations. ARC-DSL supports a range of operations, in-
cluding transformations, attribute extraction, and utility
functions. We assume that tasks requiring functions with
more lines are inherently more complex. (For further de-

eede2c1b
original:

generated (easy):

Figure 2. The examples from RE-ARC with different complexitys

tails on ARC-DSL, see Section 5.)

2. PSO Difficulty: This difficulty measure is based on the
assumption that more complex examples typically con-
tain a higher number of pixels, greater color variety,
and a higher object density, leading to a higher PSO-
Difficulty score.

We constructed two tables using the pandas library: one
ranking tasks by ARC-DSL complexity and the other by
PSO Difficulty. The tables were then merged and sorted in
ascending order, first by ARC-DSL complexity and then by
PSO Difficulty. Figure 3 presents examples of the easiest
and most challenging tasks according to this ranking.

3. Validating Existing and Basic Solutions

In this section, we assess both established and foundational
methodologies applied to the Abstract Reasoning Challenge
(ARC). We explore both the autoencoder-based Convolu-
tional Neural Network (CNN) solution and Large Language
Models (LLMs) to determine their effectiveness in handling
abstract reasoning tasks. Our experiments highlight the
strengths and limitations of these methods, particularly in
recognizing patterns, applying transformations, and gener-
ating solutions. By analyzing these initial attempts, we aim
to identify areas where these models succeed and where

https://github.com/michaelhodel/re-arc

Figure 3. Examples of different difficulty levels in ARC, easy
problems (top) and hard problems (bottom).

more sophisticated approaches or iterative improvements
are required.

3.1. Autoencoder-Based CNN Solver Replication

We set out to replicate the autoencoder and CNN method-
ology presented by Kirill Khoruzhii on Kaggle, using a
pre-trained model. This approach demonstrates genuine
ARC problem-solving potential, achieving 25% accuracy
for fully correct images and 93% accuracy for correct pix-
els. The main goal of the notebook is to establish a founda-
tion for a CNN-based model architecture and illustrate the
capabilities of CNN generation from the latent space. While
we do not yet have an improvement plan for this implemen-
tation, understanding the strengths and weaknesses of this
approach is valuable. CNNs are highly effective in process-
ing local pattern recognition tasks and can also build non-
local structures to understand connected areas. They excel
in local tasks, such as denoising and shape construction, but
are less effective in handling symmetry understanding (see
Figure 4).

3.2. Basic Solutions Using LLMs

After categorizing the puzzles by difficulty, we began by
attempting to solve simpler puzzles using only LLM-based
prompts. Initially, we asked LLMs to directly generate so-
lutions for the puzzles. However, due to the inherent limita-
tions of LLMs in image generation, the output quality was
poor.

To improve the results, we provided an example image (Fig-
ure 5) to ChatGPT-4, explaining that it was a puzzle requir-
ing pattern recognition and transformation. The initial re-
sponse lacked accuracy, so we intervened by giving further
guidance.

Once the LLM had a clearer understanding, we sent a sub-

e26a3af2: #err = 0

edu input

edu input

cu\l eulp\n -
Hi
nn

Figure 4. The good and bad performance from AE-based CNN

Train-0 in Train-1 in

Train-0 out

Figure 5. Original prompt photo

sequent image with instructions to apply the derived trans-
formation (see Figure 6).

Figure 6. Photo sent after the LLM understood the transformation

The response of the LLM, shown in Figure 7, contained the
following description:

https://www.kaggle.com/code/ka1242/arc-2024-ae-based-cnn-solver

“Here is the transformed image following the
same logic as before, focusing on emphasizing
key areas of the turtle-like pattern using yellow
highlights. The transformation reflects central or
significant parts of the structure, similar to the
process applied to previous grids.”

et
Sl

T
ErmEEE:
BT

Figure 7. Attempted transformation by ChatGPT-4

However, two main issues were identified:

* The LLM seemed to misunderstand the transformation re-
quirements, as reflected in the response text.

* The generated image was imprecise, failing to replicate
even the input puzzle with consistency.

3.3. Transitioning to Matrix Inputs and Code Gen-
eration

Given the limitations with image recognition and genera-
tion, we transitioned to using matrix representations of puz-
zles as inputs, requesting Python code as output instead.
This approach yielded better results. The conversation with
ChatGPT which can be found here, shows the first prompt
where ChatGPT understood the puzzle’s logic; however, the
initial function output did not produce the correct transfor-
mation. It only adjusted the image size without applying the
required symmetry operation (see Figure 8). After pointing
out this issue to the LLM, we received a refined function
that performed the task correctly.

These experiments have revealed several insights:

* Matrix inputs are necessary for LLMs to understand and
solve puzzles effectively, as the output must be generated
in text or Python function form.

* Even with simple puzzles, it is unlikely that an LLM will
produce a working function on the first attempt. Feed-
back is essential, but relying on human intervention is
inefficient. Therefore, an efficient, automated feedback
mechanism is required.

Input Matrix

Output Matrix

Input Matrix Output Matrix

Figure 8. Comparison between the output of the LLM function
(top) and the desired output (bottom)

4. Encoding for LLMs

To query LLMs, ARC problems must first be encoded as
text. There are several methods to encode the data, includ-
ing:

» Pixel Encoder

* Object Encoder

The pixel encoder converts an ARC problem into a 2D ar-
ray representation, as shown in Figure 9.

[[00000000]
[08888880]
[08088080]
[08080080]
[00080880]
[00000000]
[00000000]]

Figure 9. Example showing the original training example (left)
and its pixel encoding (right), where each color is mapped to an
integer in a two-dimensional array.

This encoding is the simplest to implement. However, due
to the 1D sequential nature of transformers powering LLMs,
it may not be the most optimal encoding method. The ob-
ject encoder first processes an ARC problem to identify ob-
jects according to a defined algorithm. Objects are defined
as regions of the same color with contiguous connections.
While this definition is not perfect, it successfully extracts
objects in many cases. For instance, in Figure 10, the en-
coder extracts both the blue and red regions as separate ob-
jects.

In addition to the above encodings, transformations can also
be applied to the output. Multiple transformations can be
appended to the input to the LLM along with the untrans-
formed encoding. By providing multiple “views” of the

https://chatgpt.com/share/67223bea-e574-8009-a2e6-c30eb3c2a965

Figure 10. Example of an image with two ’objects’ which must be
separately extracted.

problem to the LLM, we hypothesize that it may improve
problem-solving performance, especially for transformers,
which are naturally 1D sequential models. The transforma-
tions considered include:

* Color Swap: The solution should be invariant to swap-
ping colors (e.g., red with blue), so we can alter the inte-
gers to get different encodings.

« Flips: Flipping the problem along either the horizontal or
vertical axis.

* Rotations: Performing 90-degree rotations, similar to
flips.

Future work may include:

* Encoding representations with color names (e.g., “cyan”)
instead of integers (e.g., 8). We hypothesize this may en-
hance contextual understanding for the LLM.

» Experimentally validating the effectiveness of different
encoding methods.

5. Fine Tuning

One of the approaches for solving the ARC Challenge was
exploring fine-tuning of Large Language Models (LLMs).
The goal was to enhance the general world knowledge of
the LLM with the specific domain knowledge of solving
complex visual puzzles using Python code. The first step
in this approach was to create a dataset that mimics the ex-
pected behavior for solving these puzzles.

5.1. Creating the Dataset

Before dataset creation, our first objective was to under-
stand the requirements for fine-tuning the model to solve
ARC puzzles. ARC puzzles require models to identify ab-
stract transformations between input and output patterns.
This necessitated creating a dataset that would not only
present visual puzzles as input but also include correct so-
lutions and transformations for the model to learn.

For this task, the dataset had to simulate a puzzle-solving
interaction, where each entry included a visual puzzle, an
expected solution, and the transformation rules. The dataset
was structured as follows:

» System Message: A prompt explaining the puzzles, the
input data, and the expected output the LLLM should gen-
erate.

* Input: Multiple puzzle images of the same type in array
format, as well as the corresponding solutions.

* Qutput: A transformation function mapping the initial
pattern to the desired solution, serving as the model’s ob-
jective.

Thus, the input data for each entry represented a specific

puzzle case (as user input), while the output was the trans-

formation function (as assistant output). The goal was for
the model to learn these mappings and independently infer
transformation rules.

To define transformation functions efficiently, we relied on

a pre-existing repository, the ARC-DSL (Domain-Specific

Language) created by Michael Hodel, available at GitHub.

This repository contains hardcoded Python solutions for

each ARC puzzle, encapsulated as functions. By pars-

ing these Python functions, we could systematically extract
transformation rules and incorporate them into our dataset.

Each transformation function in ARC-DSL directly solved

a puzzle, allowing us to map each puzzle input to a known

solution function, which became the target output for fine-

tuning.

The dataset was formatted according to the fine-tuning

structure used by OpenAls models, with minor modifica-

tions to better suit our task. Each training instance in our
dataset adhered to the following format represented in fig-

ure 11:

* <Input Example X>: Contains the structured represen-
tation of one visual puzzle.

* <Output Example X>: Holds the representation of the
solution of that puzzle.

» <transformation function>>: Represents the Python
function for solving that specific puzzle.

* <Methods Used>: Lists the code for all the methods
that are used in the transformation function.

5.2. Fine Tuning Process

The fine-tuning was executed using a combination of tools
combining efficient fine-tuning frameworks with capable
hardware for the high demands of fine-tuning Large Lan-
guage Models. The following tools were utilized:

* Llama 3.1 8B: An open-source 8-billion-parameter
Large Language Model published by Meta. It was cho-
sen for fine-tuning due to its balance of performance and
manageable computational requirements. Llama 3.1 §B
provided a robust architecture for the task, offering suf-
ficient capacity to potentially learn transformation func-
tions for ARC puzzles.

* Unsloth: A fine-tuning framework that streamlined the
process of training our LLM with the customized ARC
dataset. It provided a structured and efficient approach

https://github.com/michaelhodel/arc-dsl

"messages":
{
"role": "system",
"content": "You are a senior python developer consultant participating in a coding reasoning
contest. You have to solve visual puzzles that are represented as a 2D array filled with values from
0-9, where each number represents a different color and each field in the array represents a pixel
of the image. Analyze the example inputs and outputs, and write a function that transforms the input

to the output. The function should be able to transform any input to the corresponding output.”

"role": "user",
"content": "<Input Example 1> <Output Example 1> <Input Example 2> <QOutput Example 2> ...

"role": "assistant",

"content": "<Transformation Function> <Methods

Used>"

Figure 11. Example structure of the fine-tuning dataset in OpenAl format

to setting up the fine-tuning environment, allowing us to
control batch sizes, learning rates, and other parameters
essential for effective model training on this specific task.

e Kubeflow: The university-hosted Kubernetes platform
equipped with GPU capabilities was initially chosen
as the primary computational environment for the fine-
tuning process. However, we soon encountered limita-
tions with Kubeflow due to GPU capability constraints,
so it was not possible to use Kubeflow for fine-tuning.

* Google Colab: Due to issues with Kubeflow, we resorted
to using Google Colab as an alternative environment. The
Google Colab free tier provides a Nvidia T4 GPU with
16GB of VRAM, enabling the fine-tuning process even
though some limitations, such as a usage time limit, re-
mained. With this, the fine-tuning process of the Llama
model took two hours to complete.

Despite completing the fine-tuning process, the models per-
formance was suboptimal. The trained model demonstrated
limited success in generating usable Python code for solv-
ing ARC puzzles. Most generated code was incomplete
with missing functions and general syntax errors. an ex-
ample output of the Model can be seen in Fine-tuning of
the Llama Model suggests that the current dataset and fine-
tuning approach are insufficient for the desired level of
problem-solving. The models inability to generate correct,
runnable code indicates that the created dataset lacks the
quality for sufficient fine-tuning. Moving forward, further
refinement of the dataset, a different structure, or even a dif-
ferent type of data might be necessary to improve model
performance and enhance its capabilities for solving the
ARC puzzles.

6. Automated Experimentation with LL.Ms

To validate various components of our solution, such as en-
coding and prompt engineering, we required a scalable ap-
proach to evaluate performance. For this purpose, we de-
veloped an automated pipeline for testing, which operates
as follows:

* Define a subset of tasks (typically ordered by difficulty).

* Encode each task as a prompt.

 Test each prompt (or variations of it) multiple times for
each task.

* Report results as success rates.

Given the substantial resource costs of LLMs, either in
monetary or computational terms, the experiments are con-
ducted using smaller LLMs. Specifically, we run the exper-
iments on the CGU system, configured with 4 CPU cores,
16GB of RAM, and a single GPU. We use Ollama to create
an LLM server that can be queried via Python.

We explored various LLMs as the backend, ranging from
models with 3 billion to 16 billion parameters. These in-
clude:

* deepseek-coder-v2
* mistral

e 11lama3.2

* mistral-nemo

* gwen2.5-coder

* codegemma

e 1lava:13b

7. Combining Autoencoders and LLMs

Autoencoders (AE) demonstrate the ability to perform cer-
tain tasks autonomously; however, their accuracy is often
limited. Large Language Models (LLMs), on the other
hand, excel at addressing tasks but frequently rely on it-
erative feedback for optimization. To mitigate these lim-
itations, we propose a novel methodology that synergisti-
cally combines Autoencoders with LLMs. This integrated
approach aims to leverage the respective strengths of both
paradigms, yielding improved results compared to either
method utilized in isolation. The proposed methodology
employs a two-step process:

1. Solution Generation by Autoencoder: The Autoen-
coder (AE) first generates a preliminary solution for the
given task.

2. Solution Refinement by LLM: The initial solution
from the AE is formatted into a prompt for the LLM.
This prompt includes:

» Examples illustrating the task.

* An explicit explanation of how the LLM should refine
or correct the AE’s output.

The LLM then evaluates the generated solution and de-

termines if further modifications are necessary.

This iterative mechanism capitalizes on the contextual rea-

soning capabilities of LLMs and the generative capabilities

of AEs, thereby enhancing the overall task performance.

8. LLMs with Mechnisms from Test Time
Training

In the paper “The Surprising Effectiveness of Test-Time
Training for Abstract Reasoning” [arXiv], the authors pro-
pose a method to improve the performance of LLMs on
abstract reasoning tasks. Test-Time Training (TTT) is an
adaptive optimization technique that enables models to up-
date their parameters during inference to better handle spe-
cific test cases. Unlike traditional approaches where models
remain static after training, TTT allows for dynamic adap-
tation to each new input. The process involves generating
a task-specific training dataset, temporarily updating model
parameters through techniques like Low-Rank Adaptation
(LoRA), making predictions, and then resetting parameters
for the next input. To further enhance prediction quality,
the authors implemented an Augmented Inference and Hi-
erarchical Voting mechanism. For this the authors create
subtasks form the existing data by leaving out one of the
training examples. Therefore they can generate n subtasks
for n training examples of a task. Each of the subtask ap-
plies inversible geometric transformations (such as rotations
and reflections) to the input data. These transformed ver-
sions are processed independently, and their predictions are
transformed back to the original orientation. The results
are then aggregated through a hierarchical voting process

to select the most likely answer. This mechanism is illus-
trated in Figure 12. For our test we adapted the augmenta-
tion mechanism. We create “leave-one-out” tasks for each
of the training examples and apply the transformations to
the input data. We then use the LLM to predict the answer
for each of the transformed inputs and aggregate the results
using a hierarchical voting mechanism. The final prediction
is the answer with the highest number of votes.

9. Results

Our experiments produced several key insights regarding
the integration of large language models (LLMs) with com-
puter vision (CV) methods, the necessity of reasoning for
the Abstraction and Reasoning Corpus (ARC), and perfor-
mance differences across problem difficulties. Below, we
present these findings in detail.

9.1. Performance Metrics

To evaluate model performance comprehensively, we de-

fined a suite of metrics that capture different aspects of ac-

curacy and model behavior. These metrics fall into two pri-
mary categories:

Accuracy Metrics:

* Overall Accuracy: Percentage of tasks correctly pre-
dicted.

* Pixel Accuracy: Percentage of pixels correctly predicted.

» Shape Accuracy: Percentage of shapes correctly identi-
fied and predicted.

LLM-Specific Metrics:

* Percentage Corrected: Percentage of tasks where the
LLM modified autoencoder (AE) predictions to yield cor-
rect outputs.

* Percentage Incorrected: Percentage of tasks where the
LLM modified AE predictions, resulting in incorrect out-
puts.

* Failure Rate: Percentage of tasks where the LLM failed
to produce parseable output.

These metrics allow for a nuanced analysis of both tradi-

tional CV methods and their integration with LLMs, high-

lighting not only overall performance but also the specific
contributions and limitations of LLMs in correcting and re-
fining predictions.

With these metrics established, the following sections

present detailed results and insights derived from our ex-

periments.

9.2. Performance Enhancement with LLM Integra-
tion

Table | compares the performance of various configurations
combining autoencoders (AE) with LLMs. Among these,
the configuration of AE + LLM achieved the highest over-
all accuracy of 31%, outperforming AE alone (18%) and the
standalone LLM (28%). Notably, while AE + LLM did not

https://arxiv.org/pdf/2411.07279

x

Test Task

1 X2 X3
. 7
H

o
AT

Yo ¥ Yz

&

-~

-ulln a2

Leave-one-out Queries

= E
1

Horizontal

fl- vl:l-a«
=d T 0

Eﬁ -IH -IH

Hierarchical
ﬁ M+ Majority Vote
4 I (top-2)

7 transform=’

ﬁL.'

7 transform=" I

U LM + I

') transform="

Rule Based Augmentations

Figure 12. Augmented Inference and Hierarchical Voting mechanism (source).

lead to significant improvements in pixel accuracy or shape
accuracy compared to other configurations, it demonstrated
a substantial reduction in the percentage of incorrect predic-
tions (5%) compared to standalone LLMs (13%).

These results highlight that integrating LLMs with tradi-
tional CV methods, such as autoencoders, effectively lever-
ages the strengths of both modalities. The superior reduc-
tion in errors further underscores the complementary roles
of AE and LLMs, particularly in tasks requiring nuanced
contextual understanding and reasoning.

9.3. The Role of Reasoning in ARC Performance

Table 2 illustrates that the ol-mini model was the only
model to achieve comparable performance to AE + LLM
across metrics, with a similarly low failure rate (0%). This
finding suggests that reasoning, a key capability of o1-mini,
is critical for success in ARC tasks. Conversely, models like
gwen2.5-coder and mistral, which lack advanced reasoning
capabilities, exhibited higher failure rates (50% and 54%,
respectively) despite comparable or larger model sizes.
This divergence in performance underscores that success in
ARC is not merely a function of model size but rather of
the model’s ability to perform abstract reasoning. The ol-
mini’s design, emphasizing reasoning, allows it to outper-
form larger models in tasks requiring logical inference and
pattern recognition.

9.4. LLM Superiority on Difficult Problems

Table 3 examines model performance across tasks of vary-
ing difficulty. For easy problems, AE alone outperformed
all LLM-based configurations, achieving an accuracy of
13%. However, as problem difficulty increased, smaller

LLMs like qwen?2.5-coder (14b) began to demonstrate supe-
rior performance compared to AE, achieving 13% accuracy
on hard tasks versus 8% for AE.

This trend highlights that while smaller LLMs may strug-
gle with simpler tasks, they excel in scenarios demanding
deeper reasoning. These findings further corroborate the
earlier insight that LLMs’ reasoning capabilities provide a
distinct advantage in solving complex and abstract prob-
lems.

9.5. Summary of Key Observations

LLMs Enhance CV Methods (1): The integration of LLMs
with autoencoders consistently improved task accuracy and
reduced the percentage of incorrect predictions, demon-
strating the complementary strengths of these approaches.
Reasoning is Essential for ARC (2): Performance dispari-
ties across models indicate that reasoning is a fundamental
requirement for success in ARC tasks, with ol-mini outper-
forming larger models lacking reasoning capabilities.
LLMs Excel at Hard Problems (3): Smaller LLMs out-
perform traditional CV methods as problem difficulty in-
creases, suggesting that LLMs are particularly adept at tasks
requiring abstract reasoning and deeper understanding.
These findings collectively underscore the potential of inte-
grating reasoning-centric LLMs into traditional CV work-
flows and highlight the importance of designing models
optimized for specific task complexities and reasoning re-
quirements.

10. LLM Cost

According to OpenAlT’s latest pricing policy (OpenAl API
Pricing), API calls cost $2.50 per 1 million input tokens

https://arxiv.org/html/2411.07279v1#S4
https://openai.com/api/pricing/
https://openai.com/api/pricing/

Table 1. Performance Comparison Across Configurations

Test Accuracy | Pixel Accuracy | Shape Accuracy | % Corrected | % Incor-
rected (|)
AE +LILM + TTT 28% 87% 93% 19% 9%
AE + LLM 31% 83% 93% 19% 5%
LLM 28% 83% 88% (23%) (13%)
AE 18% 85% 90% - -
Table 2. Model Performance Metrics
Model Model Size | Correct | Correct Pixels | Correct % Cor- | % Incor- | Failure
Shape rected rected () | Rate (])
ol-mini ? 31% 83% 93% 19% 5% 0%
gpt-4o 1800b 16% 82% 88% 10% 11% 0%
qwen2.5-coder 14b 11% 82% 86% 1% 8% 50%
gpt-4o-mini 8b 3% 78% 86% 1% 16% 0%
mistral 7b 10% 81% 86% 0% 8% 54%
(none) - 18% 85% 90% - - -

and $10.00 per 1 million output tokens. Given an estimated
4,000 input tokens and 2,000 output tokens per request, the
final cost estimate for 9,000 API calls is detailed in Figure
13.

After running various experiments, we can found the costs
are as follows:

* Total cost: $30

* Main cost: running 80 ol-mini tasks.

 Cost per task for ol-mini: 40c

In the end, we did not run any tasks on the o1 model. It’s es-
timated to be around 5x more expensive than the mini vari-
ant so would cost around $120 to run for the subset of 40
tasks with two measures.

11. New Advancements

During the final stages of writing this report, OpenAl an-
nounced a major breakthrough in artificial intelligence with
the announcment of their o3 reasoning model. The 03
model achieves human-like accuracy on the ARC bench-
mark. It scored an unprecedented 75.7% on the ARC-AGI
Semi-Private Evaluation set and 82.8% on the Public Evalu-
ation set under high-efficiency settings. When operating un-
der low-efficiency conditions with increased computational
resources (172x), it achieved scores of 87.5% and 91.5%
respectively. A summary of the model’s performance is
shown in Table 4.

The 03 model distinguishes itself from traditional GPT-
family architectures by incorporating test-time program
search and execution. This dynamic approach allows the
model to adapt to novel reasoning tasks beyond static pre-
training capabilities. Furthermore 03’s prompts only use
simple instructions, such as the following:

Find the common rule that maps an input grid to
an output grid, given the examples below.

The prompt then provides the task examples of input and
output grids, with the instruction being to generalize the
rule and apply it to a test task. Looking ahead, Francois
Chollet, the creator of the ARC benchmark, is now work-
ing on a more challenging ARC2 benchmark, where 03’s
scores drops significantly below 30% on this new bench-
mark. The ARC2 benchmark aims to set a new standard
for AGI research by emphasizing even more complex rea-
soning and adaptability. While the 03 reasoning model has
achieved groundbreaking results on the ARC benchmark, it
is not without limitations. One notable challenge is the sub-
stantial computational resources required, even in the high-
efficiency setting. Ata costof 17$ to 20$ per task, this mode
achieves strong performance but may still be prohibitive for
widespread or real-time applications. The low-efficiency
mode, while demonstrating the model’s upper bounds with
a remarkable 91.5% score on the public dataset, requires
billions of tokens per task. This comes at the cost of signifi-
cantly higher computation times, reaching 13.8 minutes per
task for the semi-private dataset and a 172x higher computa-
tional cost. Such resource demands emphasize the need for
further optimization to make the model more cost-effective
and scalable. Striking a balance between efficiency and per-
formance will be crucial for enabling practical deployment
across diverse use cases.

12. Conclusion

The exploration of solving the ARC Challenge using LLMs
and their integration with autoencoders has highlighted
the potential of hybrid approaches to enhance AI’s ab-

Table 3. Accuracy Across Difficulty Levels

Model Size | Easy | Medium | Hard
gwen2.5-coder | 14b | 9% 10% 13%
gpt-4o-mini ~8b | 2% 4% 5%
mistral 7b 7% 10% 7%
(none) - 13% 10% 8%

LLM API Pricing Calculator

Input tokens: |4000 Output tokens: | 2000 Number of API calls: |9000

Provider Model !(l;[;:rt.lsrice Lot
OpenAl gpt-4o $2.50
OpenAl gpt-4o-mini $0.15
OpenAl gpt-01-preview $15.00
OpenAl gf;?;;umi”i' $3.00
OpenAl gpt-3.5-turbo $0.50
Anthropic Saude-3.5- $3.00
Anthropic claude-3-haiku $0.25
Google gemini-1.5-flash $0.07
Google gemini-1.5-pro $1.50
Mistral mistral-large-2 $2.00

| Calculate |
Qutput price for 1M Price per API Total
tokens call price
$10.00 $0.0300 $270.00
$0.60 $0.0018 $16.20
$60.00 $0.1800 $1620.00
$12.00 $0.0360 $324.00
$1.50 $0.0050 $45.00
$15.00 $0.0420 $378.00
$1.25 $0.0035 $31.50
$0.30 $0.0009 $8.10
$5.00 $0.0160 $144.00
$6.00 $0.0200 $180.00

Figure 13. Cost calculator estimating the expenses for API calls.

stract reasoning capabilities. Autoencoders excel at rec-
ognizing local patterns, while LLMs demonstrate the ca-
pacity for deeper reasoning, particularly in challenging
tasks. Integrating these methods improved task accuracy
and reduced error rates, leveraging their complementary
strengths. Reasoning-centric models like ol-mini showed
that reasoning capabilities, rather than model size, are piv-
otal for success in the ARC domain.

Recent advancements, particularly OpenAI’s 03 reasoning
model, represent a significant leap forward. The 03 model
achieved unprecedented performance on the ARC bench-
mark, with scores exceeding 90% on public evaluation sets
under low-efficiency settings. Its incorporation of test-
time program search and execution allows it to dynamically
adapt to novel reasoning tasks, moving beyond the static
pretraining approaches of earlier models. Despite these
groundbreaking results, 03’s high computational costs and

10

time requirements present barriers to widespread deploy-
ment. The model’s resource demands emphasize the need
for optimization, especially as it achieves reduced perfor-
mance on the more complex ARC2 benchmark.

These findings underscore the critical role of reasoning in
solving abstract tasks, as well as the challenges of scalabil-
ity and efficiency in deploying advanced reasoning models.
Future work should aim to further refine hybrid architec-
tures, optimize reasoning-centric designs like 03, and ex-
plore innovative datasets that enhance learning efficiency.
Bridging these gaps will be crucial for advancing machine
reasoning capabilities and paving the way toward Artificial
General Intelligence (AGI).

Set Tasks | Efficiency | Score | Retail Cost | Tokens | Time/Task
Semi-Private | 100 High 75.7% $2,012 33M 1.3 min
Semi-Private 100 Low 87.5% - 5.7B 13.8 min
Public 400 High 82.8% $6,677 111M N/A
Public 400 Low 91.5% - 9.5B N/A

Table 4. Performance of the 03 reasoning model across different evaluation settings.

13. Acknowledgments

The authors would like to thank Professor Chih-Yuan Yang
for their valuable feedback throughout the project. This
work was supported by Chang Gung University’s College
of Intelligent Computing, and we appreciate Tanya Lim’s
help in managing the request. We extend special thanks to
one of our founding members Kenji Chen for his contribu-
tions, particularly in the initial testing and validation of the
autoencoder methodology, which provided a foundational
understanding for our hybrid approach.

11

	Introduction
	The ARC Dataset
	Expansion of the Dataset
	Difficulty Ranking

	Validating Existing and Basic Solutions
	Autoencoder-Based CNN Solver Replication
	Basic Solutions Using LLMs
	Transitioning to Matrix Inputs and Code Generation

	Encoding for LLMs
	Fine Tuning
	Creating the Dataset
	Fine Tuning Process

	Automated Experimentation with LLMs
	Combining Autoencoders and LLMs
	LLMs with Mechnisms from Test Time Training
	Results
	Performance Metrics
	Performance Enhancement with LLM Integration
	The Role of Reasoning in ARC Performance
	LLM Superiority on Difficult Problems
	Summary of Key Observations

	LLM Cost
	New Advancements
	Conclusion
	Acknowledgments

